The Wegner estimate and the integrated density of states for some random operators

نویسندگان

  • J M COMBES
  • P D HISLOP
  • FRÉDÉRIC KLOPP
  • SHU NAKAMURA
چکیده

The integrated density of states (IDS) for random operators is an important function describing many physical characteristics of a random system. Properties of the IDS are derived from the Wegner estimate that describes the influence of finite-volume perturbations on a background system. In this paper, we present a simple proof of the Wegner estimate applicable to a wide variety of random perturbations of deterministic background operators. The proof yields the correct volume dependence of the upper bound. This implies the local Hölder continuity of the integrated density of states at energies in the unperturbed spectral gap. The proof depends on the L-theory of the spectral shift function (SSF), for p ≥ 1, applicable to pairs of self-adjoint operators whose difference is in the trace ideal Ip , for 0 < p ≤ 1. We present this and other results on the SSF due to other authors. Under an additional condition of the single-site potential, local Hölder continuity is proved at all energies. Finally, we present extensions of this work to random potentials with nonsign definite single-site potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wegner estimate and the density of states of some indefinite alloy type Schrödinger Operators

We study Schrödinger operators with a random potential of alloy type. The single site potentials are allowed to change sign. For a certain class of them we prove a Wegner estimate. This is a key ingredient in an existence proof of pure point spectrum of the considered random Schrödinger operators. Our estimate is valid for all bounded energy intervals and all space dimensions and implies the ex...

متن کامل

The L P -theory of the Spectral Shift Function, the Wegner Estimate, and the Integrated Density of States for Some Random Operators Cnrs Luminy Case 907 F-13288 Marseille Cedex 9 France

We develop the L p-theory of the spectral shift function, for p ≥ 1, applicable to pairs of self-adjoint operators whose difference is in the trace ideal I p , for 0 < p ≤ 1. This result is a key ingredient of a new, short proof of the Wegner estimate applicable to a wide variety of additive and multiplicative random perturbations of deterministic background operators. The proof yields the corr...

متن کامل

An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators

X iv :m at hph /0 60 50 29 v1 9 M ay 2 00 6 AN OPTIMAL WEGNER ESTIMATE AND ITS APPLICATION TO THE GLOBAL CONTINUITY OF THE INTEGRATED DENSITY OF STATES FOR RANDOM SCHRÖDINGER OPERATORS Jean-Michel Combes 1 Département de Mathématiques Université de Sud, Toulon-Var 83130 La Garde, FRANCE Peter D. Hislop 2 Department of Mathematics University of Kentucky Lexington, KY 40506–0027 USA Frédéric Klop...

متن کامل

A Linear Wegner Estimate for Alloy Type Schrödinger Operators on Metric Graphs

We study spectra of alloy-type random Schrödinger operators on metric graphs. For finite edge subsets we prove a Wegner estimate which is linear in the volume (i.e. the total length of the edges) and the length of the energy interval. The single site potential needs to have fixed sign, the metric graph does not need to have a periodic structure. A further result is the existence of the integrat...

متن کامل

On the Lipschitz Continuity of the Integrated Density of States for Sign-indefinite Potentials

The present paper is devoted to the study of spectral properties of random Schrödinger operators. Using a finite section method for Toeplitz matrices, we prove a Wegner estimate for some alloy type models where the single site potential is allowed to change sign. The results apply to the corresponding discrete model, too. In certain disorder regimes we are able to prove the Lipschitz continuity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001